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Multicomponent alloying strategies

 Traditional alloy limitations
 Conventional alloys rely on a single dominant element (e.g., Fe in steel, Al in aluminum alloys) 

with minor additions to improve specific properties.
 This approach limits enhancements in strength, corrosion resistance, and thermal stability, as 

adding more elements often causes phase separation or brittleness.

 Inspiration for multicomponent alloy development
 Researchers began exploring multi-element systems to achieve unique properties through 

interactions among multiple elements.
 Advances in thermodynamic/kinetic and atomistic modeling and simulation in the 1980s and 

90s revealed that multicomponent alloys could form stable solution phases under certain 
conditions. 

 Discovery of bulk metallic glasses (e.g., Zr-Ti-Cu-Ni-Be), which avoid crystallization due to high 
complexity and sluggish crystallization kinetics, paving the way for high-performance materials.
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Some basic facts about Medium/High Entropy Alloys
 Terminology: High/Medium Entropy Alloys (HEA, MEA); Multiple 

Principal Element Alloys (MPEAs) or Complex Concentrated Alloys 
(CCAs).

 Characteristics: alloys with 3-4 (MEAs) or 5 or more (HEAs) 
elements in near-equimolar ratios, without a primary or matrix 
element.

 Research timeline: HEAs were theorized in the 1980s, but major 
research began post-2004 with initial successful syntheses.

 Unexpected phase behavior: although Gibbs’ phase rule suggests 
multiple phases, M/HEAs typically form single solid-solution phases 
instead of intermetallics.

 Solid-solution characteristics: in classical metallurgy, a solid 
solution has a main solvent element and minor solutes. In M/HEAs, 
near-equimolar compositions make it difficult to distinguish solvent 
from solute.

/S. Wang, Entropy 15(12) (2013) 5536–5548/
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Medium/High Entropy Alloys - definitions

 Composition-based definition
 HEAs: n ≥ 5 components in near-equimolar ratios or each element 

between 5-35 at.%.
 MEAs: 3-4 principal elements in significant, often near-equimolar

ratios.

 Entropy-based definition
 HEAs: molar entropy of mixing > 1.5R.
 MEAs: intermediate configurational entropy, typically between 1R and 

1.5R.

 Microstructure-based definition
 HEAs: typically form single-phase solid solutions with high-symmetry 

structures (bcc, fcc, or hcp).
 MEAs: may form single-phase solid solutions (fcc, bcc, (hcp)) but can 

also exhibit more complex phases due to simpler composition.

/S. Wang, Entropy 15(12) (2013) 5536–5548/
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Basic thermodynamic considerations for HEAs
Entropy and enthalpy in multi-component alloys

 Ideal mixing: ∆𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚= ∆𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 − T∆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚

 The entropy of mixing of an ideal mixture given by

∆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚= −𝑅𝑅�𝑥𝑥𝑖𝑖𝑙𝑙𝑙𝑙𝑥𝑥𝑖𝑖

 For the sake of simplicity, consider an alloy with N components 
in equimolar concentration (x1 = x2 =…= xN)

�
𝑖𝑖=1

𝑁𝑁

𝑥𝑥𝑖𝑖 = 𝑥𝑥1 + 𝑥𝑥2 + ⋯+ 𝑥𝑥𝑁𝑁 = 1 → 𝑥𝑥𝑖𝑖 =
1
𝑁𝑁

 The molar entropy of mixing is:

∆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚= −𝑅𝑅𝑅𝑅
1
𝑁𝑁 𝑙𝑙𝑙𝑙

1
𝑁𝑁 = −𝑅𝑅𝑅𝑅

1
𝑁𝑁 𝑙𝑙𝑙𝑙𝑙𝑙 = −𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 For combinations with concentrations for each component 
between 5 and 35 at.-pct. (i.e. the wide definition) the entropy 
of mixing is slightly less
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Basic thermodynamic considerations for HEAs
Entropy and enthalpy in multi-component alloys

 The molar enthalpy of mixing of the same equiatomic alloy is 
given in the framework of the regular solution model as

∆𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚= �
𝑖𝑖=1

𝑁𝑁−1

�
𝑗𝑗>1

𝑁𝑁

𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗Ω𝑖𝑖𝑖𝑖 = �
𝑖𝑖=1

𝑁𝑁−1

�
𝑗𝑗>1

𝑁𝑁
1
𝑁𝑁2 Ω𝑖𝑖𝑖𝑖

 Consider Ω𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. = Ω; then ∆𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 can be written as 

∆𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚= Ω
𝑁𝑁(𝑁𝑁 − 1)

2𝑁𝑁2 =
1
2
Ω 1 −

1
𝑁𝑁

 For equimolar compositions and 𝑁𝑁 → ∞, ∆𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 roughly 
doubles, while the increase in ∆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 is much more 
pronounced (with regard to the values of a binary alloy)

Normalization is done with regard
to the values of a binary system.

∆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚

∆𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚
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Stability criteria for HEAs

 Not all  4+ or 5+ element alloys with (near-)equiatomic
compositions can form M/HEAs

 Based on an empirical study, the following stability
criteria for HEAs were proposed

1) Entropy of mixing (∆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚) must be maximized

2) Enthalpy of mixing (∆𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚) between -10 and 5 kJ/mol

3) Valence Electron Concentration (VEC) 
>8 for fcc and <6.87 for bcc

4) Size mismatch of the atomic radii δ ≤ 6.6%

𝛿𝛿 % = 100 �
𝑖𝑖

𝑐𝑐𝑖𝑖(1 −
𝑟𝑟𝑖𝑖
𝑟̅𝑟

)2 with 𝑟̅𝑟 = �
𝑖𝑖

𝑐𝑐𝑖𝑖𝑟𝑟𝑖𝑖

/S. Guo, C.T. Liu, Prog. Natur. Sci. Mater Int. 21 (2011) /
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Main high entropy effects
 Thermodynamics: High entropy favors solid-solution 

phases over ordered intermetallics, which have low or
zero configurational entropy.

 Kinetics: HEAs show sluggish diffusion due to an 
inhomogeneous bonding energy landscape (BEL), with
varying bond strengths that increase activation energy
for atomic movement, enhancing high-temperature
stability.

 Structures: Severe lattice distortion occurs as elements
occupy lattice sites randomly, causing lattice strain due 
to differences in atomic radii and enhancing mechanical
strength.

 Properties: The “cocktail effect” leads to unique
properties in HEAs, such as improved hardness, 
corrosion resistance, and thermal stability, often
unattainable in single-element materials.
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Classes of HEAs

 Various classes of HEAs have been identified, with six 
main classes studied so far

1) 3d transition metal-based HEAs with fcc
structure: typically include metals like Co, Cu, 
Fe, Ni, Mn, and Cr, with additions of elements 
like Al, Mo, or Ti. 

2) Refractory HEAs with bcc structure: 
composed of early transition metals from the 
first, second, and third long periods, such as Ti, 
Zr, Ta, V, and W. 

3) Rare earth HEAs with hcp structure:
based on elements like Gd, Tb, Dy, Tm, and Lu. 

/Miracle & Senkov, Acta Materialia 122 (2017) 448-511/
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Classes of HEAs

4) Light metal-based HEAs: 
alloys like LiBeMgScTiAl, but challenging to process 
due to high reactivity with oxygen.

5) Copper alloy HEAs: 
based on existing Cu alloys (bronzes and brasses) by 
creating a Cu, Ni, Mn solid solution.

6) Precious metal HEAs: 
alloys of RhPdAgPtAu, sometimes with Cr or Mo, 
typically forming an fcc lattice

/Miracle & Senkov, Acta Materialia 122 (2017) 448-511/
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Classes of HEAs

/H.Y. Diao et al., Curr. Opin. Solid State Mater. Sci. 2017/
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HEAs with fcc structure
Influence of electron concentration on HEAs

 Composition and Tuning:
 HEAs based on CoCuFeNiCr + Al are studied for

their unique properties.
 Al addition reduces VEC and raises conduction

electron concentration (e/a), affecting structure
and properties.

 Phase Transition with Al Content:
 Low Al (high VEC): FCC structure, offering higher

ductility.
 High Al (low VEC): Transitions to BCC, enhancing

strength but reducing ductility.

 Critical VEC for Transition:
 FCC to BCC transition occurs around VEC ≈ 7.5, 

similar to pure metals’ phase shifts.
/M.G. Poletti, L. Battezzati / Acta Materialia 75 (2014) 297–306/
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HEAs with fcc structure
Influence of crystal structure on hardness

/M.H. Tsai and J.W. Yeh, Mater. Res. Lett. 2 (2014) 107-123/

/Y. Zhang et al., Prog. Mater. Sci 61 (2014) 1–93/

 Hardness significantly increases when transitioning 
from the fcc to the bcc phase

 In TM-HEAs (transition metal HEAs like Cr, Fe, Co, Ni, 
Cu, Mn), the fcc phase resembles austenite in 
stainless steel, providing softness and ductility

 The bcc structure has fewer slip systems, resulting in 
higher hardness compared to the fcc phase

 HEA hardness varies widely based on composition 
and crystal structure, enabling tailored properties for 
specific applications
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HEAs with fcc structure
Mechanical properties of HEAs

 Superior temperature stability: 
 HEAs maintain high strength across a wide 

temperature range, often outperforming 
conventional alloys in high-temperature 
applications 

 Exceptional fatigue resistance: 
 HEAs demonstrate superior resistance to 

cyclic loading
 Balanced strength and ductility: 

 HEAs provide a unique combination of high 
strength and good ductility

 Tunable properties for specific applications: 
 Different HEA compositions can be optimized 

for targeted performance, from wear 
resistance to fatigue life, through ongoing 
R&D.

O. Senkov et al. Intermetallics 18 (2010) 1758-1765

/W. Li et al. J. Mater. Res. 33(19) (2018) 3011-3034/
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Refractory HEAs with bcc structure

 Around 2010, researchers began exploring refractory 
elements like Nb, Ta, Mo, W, and Hf in HEAs due to 
their high melting points and thermal stability

 Early studies on alloys like MoNbTaW and HfNbTaTiZr
demonstrated potential for high-temperature 
applications, marking a significant advancement in 
materials science for extreme environments

 With growing interest in high-performance alloys for 
aerospace and nuclear applications, refractory HEAs 
became a focal point, with studies emphasizing their 
mechanical strength, oxidation resistance, and phase 
stability at elevated temperatures
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Refractory HEAs with bcc structure

 R-HEAs can exhibit exceptional strength at high 
temperatures, ideal for extreme environments

 Unlike many bcc metals and alloys, R-HEAs are both 
strong and reasonably ductile

 MoNbTaW and HfNbMoTaTi R-HEAs are currently 
widely investigated because of their balanced 
properties

 Increasing Mo increases strength but reduces ductility, 
allowing tailored properties

 Maintaining stable protective oxide layers is crucial for 
high-temperature oxidation resistance.

 Efforts focus on reducing heavy elements (W, Ta) to 
lower density, aiming to make R-HEAs competitive 
with Ni-based superalloys in aerospace.

O. Senkov et al. Intermetallics 18 (2010) 1758-1765
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Current research trends for HEAs
Two-phase HEAs
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Coherent precipitates in a 
Al0.2CrFeCoNi2Cu0.2 HEA

Two-phase eutectic in 
a AlCoCrFeNbxNi HEA

 Development of HEAs with secondary phases for further strengthening
 Development of HEAs with low stacking fault energy and TRIP/TWIP effect
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Current research trends for HEAs
High-strength low-density HEAs

 Extremely high strength has been obtained in a 
low-density HEA with the composition 
Al20Li20Mg10Sc20Ti30. 

 Due to the large difference in melting 
temperature of the constituents, such HEAs 
have been so far produced by powder 
metallurgy. 

 A problem is its high affinity to oxygen, that 
leads to significant oxygen pick-up during 
processing.

 The alloys are typically also not single phase, but 
tend to be mixtures of solid solutions and 
intermetallics

/K.M. Youssef et al. Mat. Res. Letters 3 (2015) 95-99/
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Crystalline vs. amorphous alloys

 As metals cool from high temperatures to 0K, they transition from gas to liquid to solid, 
decreasing entropy and increasing bonding energy (enthalpy decreases)
 Condensation (Gas to Liquid): Shortens interatomic distances with variable atomic coordination
 Solidification (Liquid to Solid): Creates a crystalline structure with long-range translational order and 

defined atomic coordination
 Rapid Cooling: If cooling is too fast, atoms lack time to arrange into a crystal, resulting in a disordered 

or amorphous solid

Crystalline Al-Mg-Zr alloy Amorphous metal
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How to prevent crystallization?

 Upon cooling, nucleation and growth rates reach a 
maximum
 Above the maximum: Nucleation limits crystallization due 

to low driving force
 Below the maximum: Growth slows as atomic diffusion 

decreases
 To form a fully amorphous solid, the cooling rate must 

avoid crossing the “onset of crystallization” curve
 Factors influencing the “onset of crystallization curve”:

 Free energy gain from crystallization
 Interface energy between the nucleus and liquid
 Atomic mobility (viscosity)

 Goal in metallic glass development: shift the “onset of 
crystallization” curve to the upper right, allowing more 
stable amorphous formation over a wider range of 
conditions
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Amorphous metal vs. metallic glasses

 Glassy solids are a type of amorphous solid. Upon 
heating, an amorphous solid crystallizes directly, while
a glassy solid first undergoes a glass transition before
crystallizing at a higher temperature.

 Glass Transition Temperature (Tg): Defined where
viscosity is 1013 Paxs Above Tg, viscosity decreases; 
below Tg, it increases.

 Glassy Structures are thermodynamically metastable, 
forming because crystalline kinetics are too slow during
cooling from the melting temperature (Tm) to Tg.

 In oxide glasses and polymers, crystallization can take
seconds to days due to structural hindrance. In metals, 
crystallization is much faster because of the isotropic
metallic bonds
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Metallic glass vs. bulk metallic glass

 Cooling depends on the heat transfer coefficient at the
surface (h) and the thermal diffusivity (αth) within the
liquid.

 When h is high, the distance (x) from the surface where a 
certain temperature is reached follows 𝛼𝛼𝛼𝛼 .

 There is a critical thickness (dcrit ​) beyond which thermal 
diffusivity limits the cooling rate, affecting glass formation.

 If dcrit ​ > 1 mm, the material is termed a bulk amorphous
metal; if not, it is an amorphous metal.

 A bulk amorphous metal with a defined glass transition
temperature is classified as a bulk metallic glass (BMG).
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«Rules» for finding BMGs

 High cooling rate: rapid cooling prevents crystallization, though alloys 
with good glass-forming ability (GFA) can tolerate slower rates

 Confusion principle: requires at least three elements capable of 
forming different crystalline structures to enhance disorder

 High entropy: using multiple principal elements increases 
configurational entropy, discouraging crystallization

 Eutectic composition: alloys near eutectic points have a higher 
tendency to form amorphous structures

 Negative enthalpy of mixing: strongly negative heat of mixing 
between each pair of main elements reduces crystallization 
likelihood

 Atomic size difference: significant atomic size difference (more than 
12%) among main constituents improves glass formation

 Tg/Tm ratio: a value of Tg/Tm around 0.66 stabilizes the liquid phase, 
aiding in glass formation (Turnbull criterion)
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Development of BMGs

 Metallic glasses have first been studied in 1960 by Duvez at Caltech in the system Au-Si
 Bulk metallic glasses have entered the scene in the 1980’s
 To date there are thousands of different alloys known to be able to be solidified as glass 

with dcrit > 1 mm
 The largest metallic glasses known can be solidified in more than 10 cm diameter.
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Fabrication of BMGs

/Z.O. Yazici et al, Met. Mater. Int. 22(1) (2016) 50-57/

 (Bulk) metallic glasses are fabricated from the melt using methods like melt spinning, splat quenching, 
suction copper mold casting, and laser-based additive manufacturing.

 BMGs must be produced in clean atmospheres (e.g., high-purity argon or vacuum) as they contain 
elements prone to react with oxygen. Oxide formation could act as crystallization sites, compromising the 
amorphous structure.

 Sometimes BMGs are annealed below their glass transition temperature to relieve internal stresses or 
modify properties. This is done carefully to avoid any risk of crystallization.
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Properties of BMGs
 Due to the lack of crystalline periodicity and the absence of 

lattice defects such as dislocations, metallic glasses 
typically exhibit relatively high strengths

 Furthermore metallic glasses are homogenous and 
isotropic with no discontinuity such as grain boundaries

 Mechanical properties
 Young’s modulus is typically smaller than the one 

of corresponding crystalline material.
 Higher yield stress than for the crystalline material 

(important exception metallic glasses containing 
metalloids)

 Elastic strain that is much larger than for 
crystalline material allowing large reversible 
deformation

 High elastic energy storage
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Properties of BMGs
 BMGs show several other interesting properties

 Better resistance to wear and corrosion than crystalline materials
 Very low thermal and electrical conductivity
 Very low magnetic losses
 Ability to form metallic sheet of complicated alloys (e.g. foils for brazing)
 Ability to be deformed in the supercooled liquid region

 Despite the promising properties, there are only a few commercial products on the
market so far
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Plastic deformation of BMGs
 Plastic deformation mechanisms in bulk metallic glasses 

(BMGs) below the glass transition temperature depend 
on temperature and strain rate
 High temperature / low stress: At higher temperatures

and lower stresses, BMGs deform through homogeneous
flow, allowing more uniform deformation.

 Low temperature: Well below the glass transition, BMGs 
deform via localized shear bands, where plastic
deformation is confined to narrow regions.

 Shear Transformation Zones (STZs): Without dislocations, 
BMGs accommodate plasticity through localized, 
irreversible atomic rearrangements (STZs), involving tens
of atoms shifting in response to stress.

 Free volume accumulation: STZs require free volume, and
shear band formation generates additional free volume, 
facilitating further deformation but limiting ductility in 
BMGs.

/D.V. Louzguine-Luzgin et al., Metals 3(1) (2013) 1-22/

Regions of
free volume
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The «frozen-in» free volume

 Crystallization vs. glass formation: in crystallization, most 
free volume is eliminated. In BMGs, some free volume 
remains “frozen-in.”

 Free volume reduction: upon cooling, atomic 
rearrangements reduce free volume gradually in BMGs, 
depending on cooling rate.

 Frozen-in free volume: difference between the crystalline 
and glass molar volumes. Extrapolating glass volume to 
higher temperatures intersects with liquid volume at the 
fictive temperature (TF ​).

 TF ​ is dependent on cooling rate; higher TF leads to more 
ductile glass.

 Impact on Tg: The amount of frozen-in free volume slightly 
affects Tg, resulting in a Tg range
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Relaxation and rejuvenation of BMGs

 The reduction of free volume upon reheating a glass 
is known as “relaxation”. This can be observed by 
exposing a glass to a temperature near its Tg and 
measuring its density over time.

 The opposite process, “rejuvenation”, involves 
increasing free volume through methods like ion 
bombardment or plastic deformation near Tg.

 Due to its link to ductility, which depends partly on 
free volume, rejuvenation methods are a current 
focus of research to improve the mechanical 
properties of glasses.
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Learning objectives
 High Entropy Alloys (HEAs)

 Understand HE alloying concepts: understand multicomponent alloying strategies
 Thermodynamics: understand high entropy effects, sluggish diffusion.
 HEA classes and structures: fcc, bcc and hcp HEA types 
 Mechanical properties: mechanical properties of HEAs, including high-temperature strength and 

fatigue resistance.
 Application potential: recognize HEAs' uses in extreme environments like aerospace and nuclear.

 Bulk Metallic Glasses (BMGs)
 Formation mechanisms: understand critical cooling rates, free volume, and the importance of the 

fictive temperature.
 Properties and challenges: basic BMG properties, including high strength, ductility limitations, and 

resistance to wear and corrosion.
 Plastic deformation mechanisms: shear bands, shear transformation zones (STZs), and free volume 

accumulation.
 Fabrication techniques: review methods like melt spinning, splat quenching, and additive 

manufacturing.
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