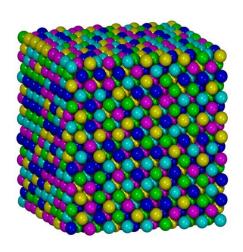


FS 2024/25

MSE-422 – Advanced Metallurgy
9-High Entropy Alloys and Bulk Metallic Glasses

Christian Leinenbach

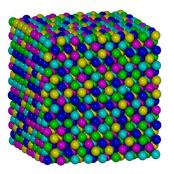
Multicomponent alloying strategies



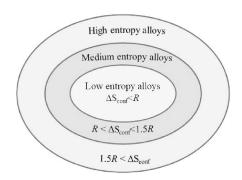
- Traditional alloy limitations
 - Conventional alloys rely on a single dominant element (e.g., Fe in steel, Al in aluminum alloys) with minor additions to improve specific properties.
 - This approach limits enhancements in strength, corrosion resistance, and thermal stability, as adding more elements often causes phase separation or brittleness.
- Inspiration for multicomponent alloy development
 - Researchers began exploring multi-element systems to achieve unique properties through interactions among multiple elements.
 - Advances in thermodynamic/kinetic and atomistic modeling and simulation in the 1980s and 90s revealed that multicomponent alloys could form stable solution phases under certain conditions.
 - Discovery of bulk metallic glasses (e.g., Zr-Ti-Cu-Ni-Be), which avoid crystallization due to high complexity and sluggish crystallization kinetics, paving the way for high-performance materials.

Some basic facts about Medium/High Entropy Alloys

- Terminology: High/Medium Entropy Alloys (HEA, MEA); Multiple Principal Element Alloys (MPEAs) or Complex Concentrated Alloys (CCAs).
- Characteristics: alloys with 3-4 (MEAs) or 5 or more (HEAs) elements in near-equimolar ratios, without a primary or matrix element.
- **Research timeline:** HEAs were theorized in the 1980s, but major research began post-2004 with initial successful syntheses.
- Unexpected phase behavior: although Gibbs' phase rule suggests multiple phases, M/HEAs typically form single solid-solution phases instead of intermetallics.
- Solid-solution characteristics: in classical metallurgy, a solid solution has a main solvent element and minor solutes. In M/HEAs, near-equimolar compositions make it difficult to distinguish solvent from solute.



/S. Wang, Entropy 15(12) (2013) 5536-5548/


Medium/High Entropy Alloys - definitions

- Composition-based definition
 - HEAs: n ≥ 5 components in near-equimolar ratios or each element between 5-35 at.%.
 - MEAs: 3-4 principal elements in significant, often near-equimolar ratios.
- Entropy-based definition
 - HEAs: molar entropy of mixing > 1.5R.
 - MEAs: intermediate configurational entropy, typically between 1R and 1.5R.
- Microstructure-based definition
 - HEAs: typically form single-phase solid solutions with high-symmetry structures (bcc, fcc, or hcp).
 - MEAs: may form single-phase solid solutions (fcc, bcc, (hcp)) but can also exhibit more complex phases due to simpler composition.

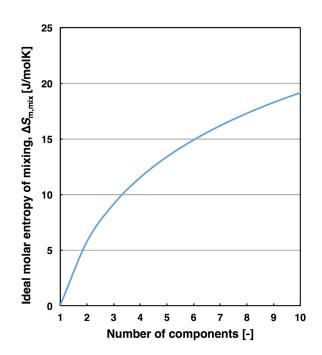
/S. Wang, Entropy 15(12) (2013) 5536-5548/

Basic thermodynamic considerations for HEAs

Entropy and enthalpy in multi-component alloys

- Ideal mixing: $\Delta G^{mix} = \Delta H^{mix} T\Delta S^{mix}$
- The entropy of mixing of an ideal mixture given by

$$\Delta S^{mix} = -R \sum x_i ln x_i$$


For the sake of simplicity, consider an alloy with N components in equimolar concentration $(x_1 = x_2 = ... = x_N)$

$$\sum_{i=1}^{N} x_i = x_1 + x_2 + \dots + x_N = 1 \to x_i = \frac{1}{N}$$

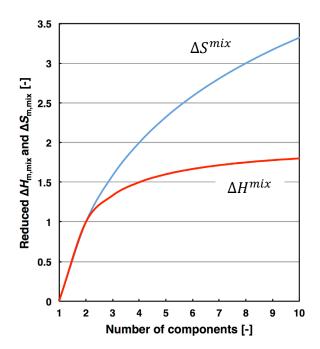
The molar entropy of mixing is:

$$\Delta S^{mix} = -RN\left(\frac{1}{N}\ln\frac{1}{N}\right) = -RN\frac{1}{N}\ln N = -R\ln N$$

■ For combinations with concentrations for each component between 5 and 35 at.-pct. (i.e. the wide definition) the entropy of mixing is slightly less

Basic thermodynamic considerations for HEAs

Entropy and enthalpy in multi-component alloys


The molar enthalpy of mixing of the same equiatomic alloy is given in the framework of the regular solution model as

$$\Delta H^{mix} = \sum_{i=1}^{N-1} \sum_{j>1}^{N} x_i x_j \Omega_{ij} = \sum_{i=1}^{N-1} \sum_{j>1}^{N} \frac{1}{N^2} \Omega_{ij}$$

• Consider $\Omega_{ij} = const. = \Omega$; then ΔH^{mix} can be written as

$$\Delta H^{mix} = \Omega \frac{N(N-1)}{2N^2} = \frac{1}{2}\Omega \left(1 - \frac{1}{N}\right)$$

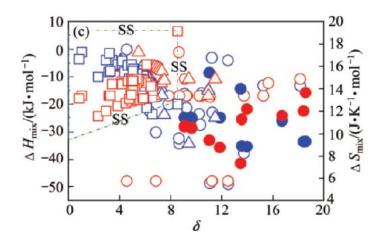
For equimolar compositions and $N \to \infty$, ΔH^{mix} roughly doubles, while the increase in ΔS^{mix} is much more pronounced (with regard to the values of a binary alloy)

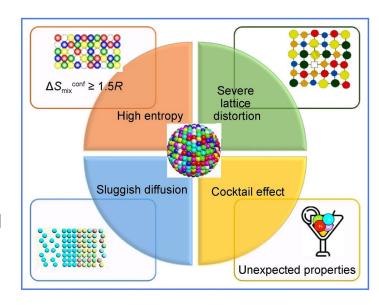
Normalization is done with regard to the values of a binary system.

Stability criteria for HEAs

- Not all 4+ or 5+ element alloys with (near-)equiatomic compositions can form M/HEAs
- Based on an empirical study, the following stability criteria for HEAs were proposed
 - 1) Entropy of mixing (ΔS^{mix}) must be maximized
 - 2) Enthalpy of mixing (ΔH^{mix}) between -10 and 5 kJ/mol
 - Valence Electron Concentration (VEC)>8 for fcc and <6.87 for bcc
 - 4) Size mismatch of the atomic radii $\delta \le 6.6\%$

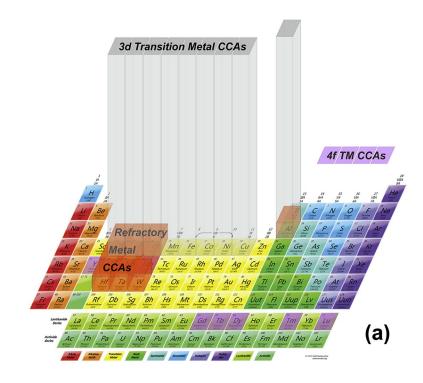
$$\delta[\%] = 100 \sqrt{\sum_i c_i (1 - \frac{r_i}{\bar{r}})^2} \text{ with } \bar{r} = \sum_i c_i r_i$$




Fig. 2 Superimposed effect of $\Delta H_{\rm mix}$ and δ (a), $\Delta S_{\rm mix}$ and δ (b), and all three parameters $\Delta H_{\rm mix}$, δ and $\Delta S_{\rm mix}$ (c) on phase stability in equiatomic multi-component alloys and BMGs. The symbol \circ represents equiatomic amorphous phase forming alloys; \bullet represents non-equiatomic amorphous phase forming alloys; \Box represents solid solution phases and \triangle represents intermetallic phases. The region delineated by the dash-dotted lines in (c) indicates the requirements for solid solution phases to form.

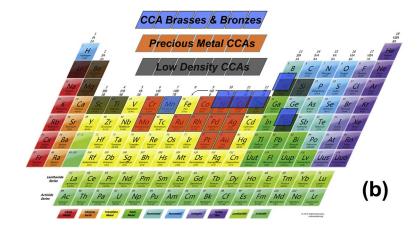
/S. Guo, C.T. Liu, Prog. Natur. Sci. Mater Int. 21 (2011) /

Main high entropy effects


- Thermodynamics: High entropy favors solid-solution phases over ordered intermetallics, which have low or zero configurational entropy.
- Kinetics: HEAs show sluggish diffusion due to an inhomogeneous bonding energy landscape (BEL), with varying bond strengths that increase activation energy for atomic movement, enhancing high-temperature stability.
- Structures: Severe lattice distortion occurs as elements occupy lattice sites randomly, causing lattice strain due to differences in atomic radii and enhancing mechanical strength.
- Properties: The "cocktail effect" leads to unique properties in HEAs, such as improved hardness, corrosion resistance, and thermal stability, often unattainable in single-element materials.

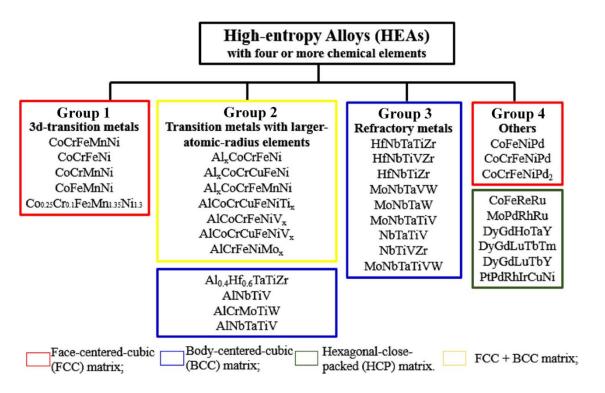
Classes of HEAs

- Various classes of HEAs have been identified, with six main classes studied so far
 - 3d transition metal-based HEAs with fcc structure: typically include metals like Co, Cu, Fe, Ni, Mn, and Cr, with additions of elements like Al, Mo, or Ti.
 - 2) Refractory HEAs with bcc structure: composed of early transition metals from the first, second, and third long periods, such as Ti, Zr, Ta, V, and W.
 - 3) Rare earth HEAs with hcp structure: based on elements like Gd, Tb, Dy, Tm, and Lu.



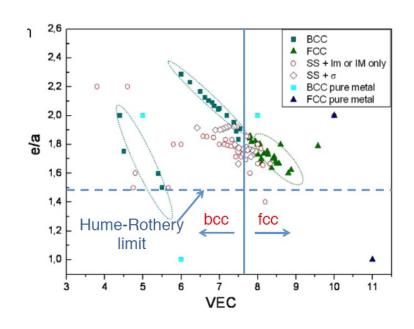
/Miracle & Senkov, Acta Materialia 122 (2017) 448-511/

Classes of HEAs


- 4) Light metal-based HEAs: alloys like LiBeMgScTiAl, but challenging to process due to high reactivity with oxygen.
- 5) Copper alloy HEAs: based on existing Cu alloys (bronzes and brasses) by creating a Cu, Ni, Mn solid solution.
- 6) Precious metal HEAs: alloys of RhPdAgPtAu, sometimes with Cr or Mo, typically forming an fcc lattice

/Miracle & Senkov, Acta Materialia 122 (2017) 448-511/

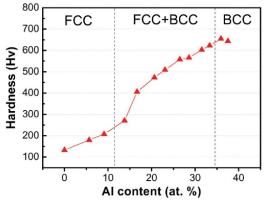
Classes of HEAs

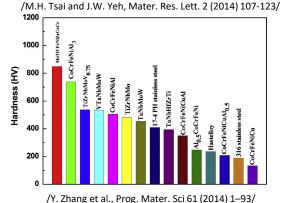

/H.Y. Diao et al., Curr. Opin. Solid State Mater. Sci. 2017/

HEAs with fcc structure

Influence of electron concentration on HEAs

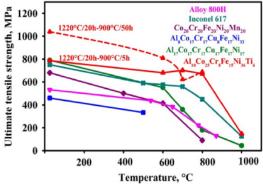
- Composition and Tuning:
 - HEAs based on CoCuFeNiCr + Al are studied for their unique properties.
 - Al addition reduces VEC and raises conduction electron concentration (e/a), affecting structure and properties.
- Phase Transition with Al Content:
 - Low Al (high VEC): FCC structure, offering higher ductility.
 - High Al (low VEC): Transitions to BCC, enhancing strength but reducing ductility.
- Critical VEC for Transition:
 - FCC to BCC transition occurs around VEC ≈ 7.5, similar to pure metals' phase shifts.


/M.G. Poletti, L. Battezzati / Acta Materialia 75 (2014) 297–306/

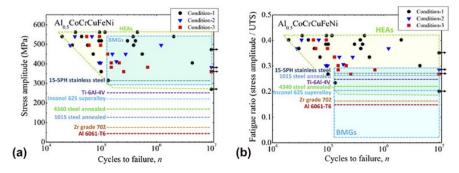

HEAs with fcc structure

Influence of crystal structure on hardness

- Hardness significantly increases when transitioning from the fcc to the bcc phase
- In TM-HEAs (transition metal HEAs like Cr, Fe, Co, Ni, Cu, Mn), the fcc phase resembles austenite in stainless steel, providing softness and ductility
- The bcc structure has fewer slip systems, resulting in higher hardness compared to the fcc phase
- HEA hardness varies widely based on composition and crystal structure, enabling tailored properties for specific applications

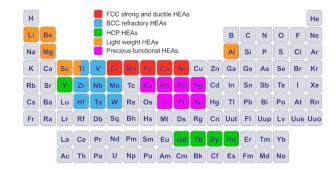


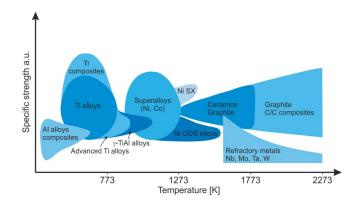
HEAs with fcc structure


Mechanical properties of HEAs

- Superior temperature stability:
 - HEAs maintain high strength across a wide temperature range, often outperforming conventional alloys in high-temperature applications
- Exceptional fatigue resistance:
 - HEAs demonstrate superior resistance to cyclic loading
- Balanced strength and ductility:
 - HEAs provide a unique combination of high strength and good ductility
- Tunable properties for specific applications:
 - Different HEA compositions can be optimized for targeted performance, from wear resistance to fatigue life, through ongoing R&D.

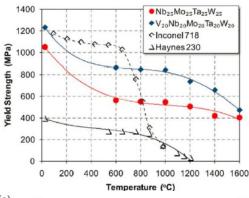
O. Senkov et al. Intermetallics 18 (2010) 1758-1765

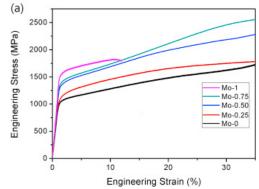



/W. Li et al. J. Mater. Res. 33(19) (2018) 3011-3034/

Refractory HEAs with bcc structure

- Around 2010, researchers began exploring refractory elements like Nb, Ta, Mo, W, and Hf in HEAs due to their high melting points and thermal stability
- Early studies on alloys like MoNbTaW and HfNbTaTiZr demonstrated potential for high-temperature applications, marking a significant advancement in materials science for extreme environments
- With growing interest in high-performance alloys for aerospace and nuclear applications, refractory HEAs became a focal point, with studies emphasizing their mechanical strength, oxidation resistance, and phase stability at elevated temperatures



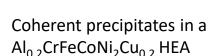


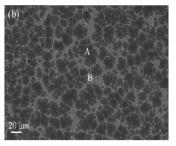
Refractory HEAs with bcc structure

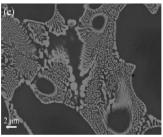
- R-HEAs can exhibit exceptional strength at high temperatures, ideal for extreme environments
- Unlike many bcc metals and alloys, R-HEAs are both strong and reasonably ductile
- MoNbTaW and HfNbMoTaTi R-HEAs are currently widely investigated because of their balanced properties
- Increasing Mo increases strength but reduces ductility, allowing tailored properties
- Maintaining stable protective oxide layers is crucial for high-temperature oxidation resistance.
- Efforts focus on reducing heavy elements (W, Ta) to lower density, aiming to make R-HEAs competitive with Ni-based superalloys in aerospace.

O. Senkov et al. Intermetallics 18 (2010) 1758-1765

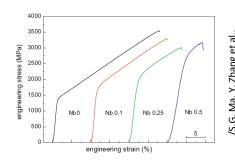
Current research trends for HEAs

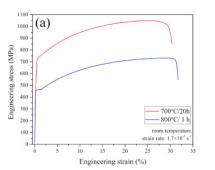


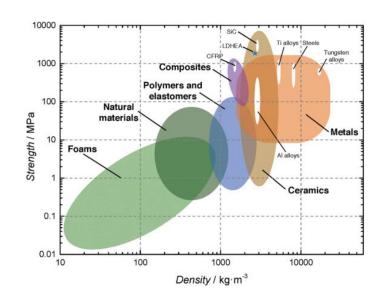

Two-phase HEAs


- Development of HEAs with secondary phases for further strengthening
- Development of HEAs with low stacking fault energy and TRIP/TWIP effect

(a) 700°C/20h


Two-phase eutectic in a AlCoCrFeNb_xNi HEA

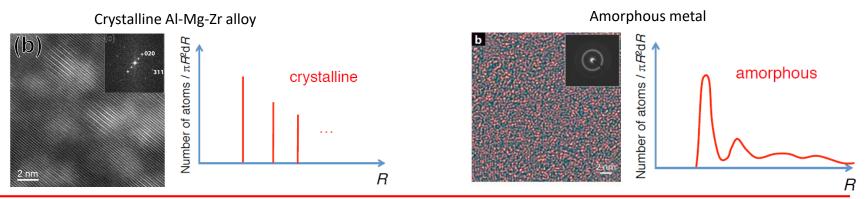




Current research trends for HEAs

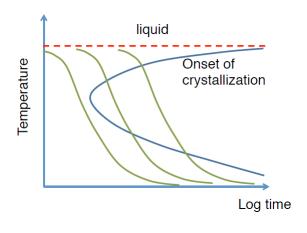
High-strength low-density HEAs

- Extremely high strength has been obtained in a low-density HEA with the composition Al₂₀Li₂₀Mg₁₀Sc₂₀Ti₃₀.
- Due to the large difference in melting temperature of the constituents, such HEAs have been so far produced by powder metallurgy.
- A problem is its high affinity to oxygen, that leads to significant oxygen pick-up during processing.
- The alloys are typically also not single phase, but tend to be mixtures of solid solutions and intermetallics

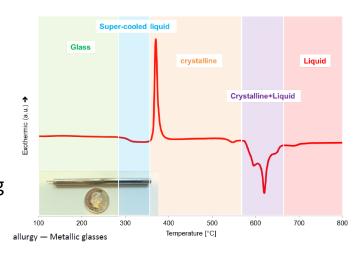


/K.M. Youssef et al. Mat. Res. Letters 3 (2015) 95-99/

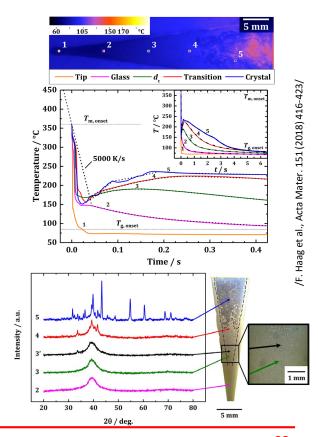
Crystalline vs. amorphous alloys


- As metals cool from high temperatures to OK, they transition from gas to liquid to solid, decreasing entropy and increasing bonding energy (enthalpy decreases)
 - Condensation (Gas to Liquid): Shortens interatomic distances with variable atomic coordination
 - Solidification (Liquid to Solid): Creates a crystalline structure with long-range translational order and defined atomic coordination
 - Rapid Cooling: If cooling is too fast, atoms lack time to arrange into a crystal, resulting in a disordered or amorphous solid

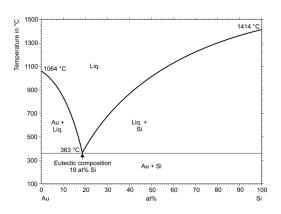
How to prevent crystallization?


- Upon cooling, nucleation and growth rates reach a maximum
 - Above the maximum: Nucleation limits crystallization due to low driving force
 - Below the maximum: Growth slows as atomic diffusion decreases
- To form a fully amorphous solid, the cooling rate must avoid crossing the "onset of crystallization" curve
- Factors influencing the "onset of crystallization curve":
 - Free energy gain from crystallization
 - Interface energy between the nucleus and liquid
 - Atomic mobility (viscosity)
- Goal in metallic glass development: shift the "onset of crystallization" curve to the upper right, allowing more stable amorphous formation over a wider range of conditions

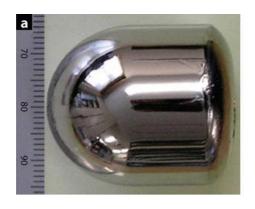
Amorphous metal vs. metallic glasses

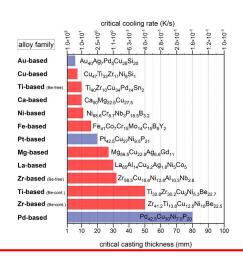

- Glassy solids are a type of amorphous solid. Upon heating, an amorphous solid crystallizes directly, while a glassy solid first undergoes a glass transition before crystallizing at a higher temperature.
- Glass Transition Temperature (Tg): Defined where viscosity is 1013 Paxs Above Tg, viscosity decreases; below Tg, it increases.
- Glassy Structures are thermodynamically metastable, forming because crystalline kinetics are too slow during cooling from the melting temperature (Tm) to Tg.
- In oxide glasses and polymers, crystallization can take seconds to days due to structural hindrance. In metals, crystallization is much faster because of the isotropic metallic bonds

Metallic glass vs. bulk metallic glass


- Cooling depends on the **heat transfer coefficient** at the surface (h) and the **thermal diffusivity** (α_{th}) within the liquid.
- When h is high, the distance (x) from the surface where a certain temperature is reached follows $\sqrt{\alpha t}$.
- There is a critical thickness (d_{crit}) beyond which thermal diffusivity limits the cooling rate, affecting glass formation.
- If d_{crit} > 1 mm, the material is termed a bulk amorphous metal; if not, it is an amorphous metal.
- A bulk amorphous metal with a defined glass transition temperature is classified as a bulk metallic glass (BMG).

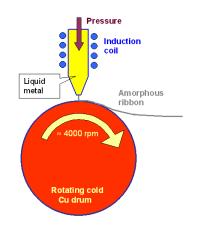
«Rules» for finding BMGs

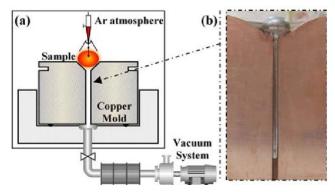

- High cooling rate: rapid cooling prevents crystallization, though alloys with good glass-forming ability (GFA) can tolerate slower rates
- Confusion principle: requires at least three elements capable of forming different crystalline structures to enhance disorder
- High entropy: using multiple principal elements increases configurational entropy, discouraging crystallization
- Eutectic composition: alloys near eutectic points have a higher tendency to form amorphous structures
- Negative enthalpy of mixing: strongly negative heat of mixing between each pair of main elements reduces crystallization likelihood
- Atomic size difference: significant atomic size difference (more than 12%) among main constituents improves glass formation
- T_g/T_m ratio: a value of T_g/T_m around 0.66 stabilizes the liquid phase, aiding in glass formation (Turnbull criterion)



Development of BMGs

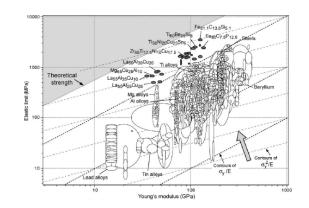
- Metallic glasses have first been studied in 1960 by Duvez at Caltech in the system Au-Si
- Bulk metallic glasses have entered the scene in the 1980's
- To date there are thousands of different alloys known to be able to be solidified as glass with $d_{crit} > 1$ mm
- The largest metallic glasses known can be solidified in more than 10 cm diameter.

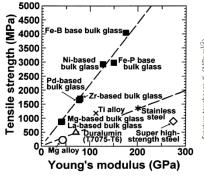


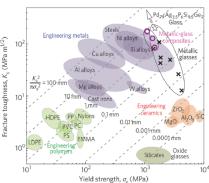


Fabrication of BMGs

- (Bulk) metallic glasses are fabricated from the melt using methods like melt spinning, splat quenching, suction copper mold casting, and laser-based additive manufacturing.
- BMGs must be produced in clean atmospheres (e.g., high-purity argon or vacuum) as they contain elements prone to react with oxygen. Oxide formation could act as crystallization sites, compromising the amorphous structure.
- Sometimes BMGs are annealed below their glass transition temperature to relieve internal stresses or modify properties. This is done carefully to avoid any risk of crystallization.



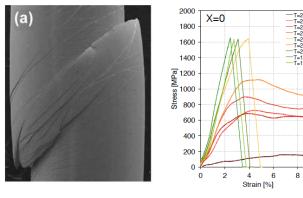

/Z.O. Yazici et al, Met. Mater. Int. 22(1) (2016) 50-57/

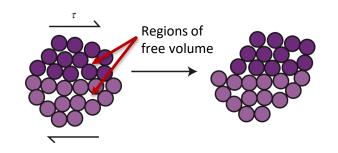

Properties of BMGs

- Due to the lack of crystalline periodicity and the absence of lattice defects such as dislocations, metallic glasses typically exhibit relatively high strengths
- Furthermore metallic glasses are homogenous and isotropic with no discontinuity such as grain boundaries
- Mechanical properties
 - Young's modulus is typically smaller than the one of corresponding crystalline material.
 - Higher yield stress than for the crystalline material (important exception metallic glasses containing metalloids)
 - Elastic strain that is much larger than for crystalline material allowing large reversible deformation
 - High elastic energy storage

Properties of BMGs

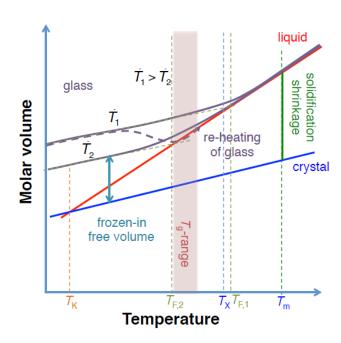
- BMGs show several other interesting properties
 - Better resistance to wear and corrosion than crystalline materials
 - Very low thermal and electrical conductivity
 - Very low magnetic losses
 - Ability to form metallic sheet of complicated alloys (e.g. foils for brazing)
 - Ability to be deformed in the supercooled liquid region
- Despite the promising properties, there are only a few commercial products on the market so far




Plastic deformation of BMGs

EPFL

- Plastic deformation mechanisms in bulk metallic glasses (BMGs) below the glass transition temperature depend on temperature and strain rate
 - **High temperature / low stress**: At higher temperatures and lower stresses, BMGs deform through **homogeneous flow**, allowing more uniform deformation.
 - Low temperature: Well below the glass transition, BMGs deform via localized shear bands, where plastic deformation is confined to narrow regions.
 - Shear Transformation Zones (STZs): Without dislocations, BMGs accommodate plasticity through localized, irreversible atomic rearrangements (STZs), involving tens of atoms shifting in response to stress.
 - Free volume accumulation: STZs require free volume, and shear band formation generates additional free volume, facilitating further deformation but limiting ductility in BMGs.


/D.V. Louzguine-Luzgin et al., Metals 3(1) (2013) 1-22/

The «frozen-in» free volume

- Crystallization vs. glass formation: in crystallization, most free volume is eliminated. In BMGs, some free volume remains "frozen-in."
- Free volume reduction: upon cooling, atomic rearrangements reduce free volume gradually in BMGs, depending on cooling rate.
- **Frozen-in free volume:** difference between the crystalline and glass molar volumes. Extrapolating glass volume to higher temperatures intersects with liquid volume at the fictive temperature (T_F) .
- T_F is dependent on cooling rate; higher T_F leads to more ductile glass.
- Impact on T_g : The amount of frozen-in free volume slightly affects T_g , resulting in a T_g range

Relaxation and rejuvenation of BMGs

- The reduction of free volume upon reheating a glass is known as "relaxation". This can be observed by exposing a glass to a temperature near its Tg and measuring its density over time.
- The opposite process, "rejuvenation", involves increasing free volume through methods like ion bombardment or plastic deformation near T_g.
- Due to its link to ductility, which depends partly on free volume, rejuvenation methods are a current focus of research to improve the mechanical properties of glasses.

Learning objectives

- High Entropy Alloys (HEAs)
 - Understand HE alloying concepts: understand multicomponent alloying strategies
 - > Thermodynamics: understand high entropy effects, sluggish diffusion.
 - ► HEA classes and structures: fcc, bcc and hcp HEA types
 - Mechanical properties: mechanical properties of HEAs, including high-temperature strength and fatigue resistance.
 - > Application potential: recognize HEAs' uses in extreme environments like aerospace and nuclear.
- Bulk Metallic Glasses (BMGs)
 - > Formation mechanisms: understand critical cooling rates, free volume, and the importance of the fictive temperature.
 - Properties and challenges: basic BMG properties, including high strength, ductility limitations, and resistance to wear and corrosion.
 - Plastic deformation mechanisms: shear bands, shear transformation zones (STZs), and free volume accumulation.
 - Fabrication techniques: review methods like melt spinning, splat quenching, and additive manufacturing.